
f

OOMPÜTÄTIOMAL EXPERIENCE WITH THE
BAUS INTEGER PROGMIMNG ALOORITItf

Raoul J. Preesaatt

October 1965

CLEARINGHOUSE
FOR FFHEPAL SCTENTIFIC'AND

TECHNICAL INFOJIMARON
Hardcopy I iücroficbc

mtmi mn
d*

P-3241

Approvefl for releate by the Clearinghou« for
FWeral Scientific and Technical Information

COMPUTATIONAL EXPERIENCE WITH THE
BALAS INTEGER PROGRAMMING ALGORITHM

Raoul J. Freeman

The RAND Corporation, Santa Monica, California

I. INTRODUCTION

A recent and significant addition to the literature of partial

enumeration methods of solving integer linear programming problems has

been the algorithm of Balas . Building upon the foundation laid by

(I) and (2), a version of this algorithm was outlined In (3) that

especially lends Itself to computer Implementation. This has since

been programmed, and the purpose of this report Is to describe some

computational experience with the algorithm and to discuss future

avenues of research that may be undertaken.

*Any views expressed In this paper are those of the author. They
should not be Interpreted as reflecting the views of The RAND Corporation
or the official opinion or policy of any of Its governmental or private
research sponsors. Papers are reproduced by The RAND Corporation as a
courtesy to members of Its staff.

•2-

II. SOME ASPECTS OF THE ALGORITHM

We shall first review certain features of the algorithm. For a

detailed exposition see (3). Our problem Is to

Minimize £. c. x.

Subject to b + I a. . x £ 0 J » I, ... , m

x. =Oorl 1=1,...,n
i

*
c., b. and a., are constants (c, ^ 0) .

1 j i j I '

Given that there are upper bounds on the Integer variables In

question, the above representation Is sufficiently general to describe

any Integer programming problem. A solution Is an n vector of G's and

I's. There are obviously 2 different possible solutions to the above

problem. A feasible solution Is a solution which satisfies b. + E a ^ 0,

J ■ 1, ..., m, and an optimal feasible solution Is a feasible solution

which yields the lowest value for I c x .

The basic Idea of the Balas algorithm Is to obtain an optimal

feasible solution (or knowledge that none exists) without having to

evaluate each of the 2 possible solutions. However, the procedure does

enumerate a subset of the 2 solutions, and there Is no guarantee that

the size of this subset will not approach 2 for any given problem.

Tlius , as with any enumeratlve procedure, computational experience Is the

best Indicator of Its worthiness for various types of problems.

Any nonblnary Integer variable x with upper bound v has the binary
k 1

representation x « £ ^ ^i » w^ere ^ ^s the smallest Integer such that

Ict-l v i 2 -I and the y. are binary variables. The transformation x « I - y

will change any c < 0 to one that Is > 0.

•3-

A partial solution of size k Is a specification of values (0 or

1) for k of the n variables. A completion of a partial solution Is a

specification of the other n-k variables not Included In the partial

solution. Thus, If It can be shown that a certain partial solution

has no feasible completion, or If a completion which gives the least
n-k

value to E. c. x. can readily be found, then one may eliminate 2

possible solutions from consideration In searching for an optimal

feasible solution to the original problem. The Balas procedure con-

sists of considering a sequence of partial solutions, and of trying

to eliminate groups of completions by showing that none are feasible

or that an objective function value as good as any contained In that

group of completions has already been attained. The algorithm proceeds

In an exhaustive and nonrepetltlve manner which leads to the implicit

enumeration of all possible solutions.

Fathoming a partial solution Is defined as: (a) finding a best

feasible completion which yields a lower value for the objective func-

tion than the best feasible solution known to date; or (b) showing

that no feasible completions exist which yield a lower value to the

objective than the best feasible solution known to date. The procedure

begins with a partial solution where k « 0. A best completion (I.e.,

that completion yielding the smallest objective function value) Is the

one with all n-k variables being set to zero (remember all c. ^0).

If this best completion Is feasible, then It Is not necessary to con-

sider other possible completions of this same partial solution. If It

Is not feasible and It also cannot be shown that there are no other

feasible solutions which yield lower objective function values than

the best feasible solution known to date, then a uew partial solution

Is contemplated. The new partial solution (k raised to k + 1) Is

obtained via an augmentation procedure. Obviously, If fathoming occurs

at k = 0, then all 2 possible solutions have been Implicitly enu-

merated. If fathoming occurs at k > 0, then a smaller number of solu-

tions have been Implicitly enumerated, and the rest must still be

examined.

The augmentation procedure that Is used In the present version of

the algorithm Is to add that variable which will decrease the Infeas-

ibLllty of the present solutLon the most. This tends to motivate

feasible solutions to appear early. Once a feasible solution Is ob-

tained, It Is kept In storage and Is replaced only by another feasible

solution which yields a lower objective function value. Ihus, the

enumeration is "primal feasible" and termination prior to attaining

optlmallty still may lead to a fairly good solution.

All partial solutions must either be fathomed or augmented. From

the point of view of minimizing the total amount of computation, It

behooves us to try to get the fathoming done with as little augmenta-

tion as possible.

Any partial solution (except where k = 0) that is being fathomed

can itself be viewed as an augmentation of other partial solutions.

Consider a partial solution of size kf and assume that an augmented

partial solution of size k + 1 can be fathomed with the value of the

additional variable ■ 0 and then can also be fathomed with the value

of the additional variable = I; then we have also fathomed the partial

solution of size k. This can readily be seen because the fathoming
n-k-l of the augmented partial solution produces 2 Implicitly enumerated

possible solutions for each of the two possible values of the additional

variable. Thus, we have a total of 2(2) ■ 2 Implicitly enu-

merated solutions which Is the required number for fathoming of the

partial solution of length k.

III. COMPUTATIONAL EXPERIENCE

Unfortunately, at present, there Is no standard group of test

problems against which integer programming algorithms can be tested.

However, a group of test problems have been gathered in (A) with which

three "cutting plane" codes are compared. The results are tabulated

in terms of number of iterations required by each. Running times are

not given, although this would provide the most convenient way to com-

pare the retormulated Balas algorithm with the cutting plane methods.

Thus, we shall report our running times on certain of the problems of

(4) without attempting code comparisons.

TJiere are ten "fixed charge" problems in (4) . These problems

feature special constraints which force certain variables to assume

nonzero value if some of the other variables take on nonzero values.

Our experience with the algorithm applied to some of these problems is

summarized below.

Running Time
To Optimal Value

No. of Running Time of Obj. Function
Haldi Binary No. of To Termination (using upper bound

Problem No. Variables Inequalities (seconds) on obi. func.)

1 14 4 3 3
2 14 4 3 3
3 14 4 4 4
4 14 4 2 2
5 20 6 420 242
6 20 6 120 68
7 20 4 360 235
8 20 4 60 l-f

The last nine problems In (4) were obtained from I IM and are a

potpourri of integer problems which feature matrices of OV and I's.

Listed below is our experience with some of these problems.

Running Time
To Optimal Value

No. of Running Time of Obj. Function
I9i Binary No. of To Termination (using upper bound

Problem No. Variables Inequalities (seconds) on obj. func.)

1 21 7 3A A
2 21 7 20 2
3 20 3 2 2
A 30 15 >600 60*
6 31 31 >600 2**
9 15 50 UA 1+

In another problem of the "fixed charge - knapsack" variety with

A8 constraints and 26 variables, the Balas algorithm did not flr.d an

optimal solution In 10 minutes. Hovever, although not terminating It

did reach the optimal value of the objective function In 30 seconds

when supplied with an additional constraint forcing the objective below

a certain Initial value.

On a problem from (5) where the PK1P91 code did not obtain an

optimal solution In 20 minutes of 7090 time, we did find an optimal

solution In 8 minutes. However, we did not obtain termination. In

other words, the algorithm did not know it had found the optimal solu-

tion and had to continue Its search. The problem was 31 x 27. Intro-

duction of an Initial upper bound on the objective function did cut the

time to reach an optimal solution to a few seconds. If a good estimate

of the value of the optimal solution Is available a priori then the

computation could be terminated as soon as It achieves that value.

Tentative conclusions that can be drawn from the above experience

are as follows:

1. The algorithm seems fairly successful In Its present form for

problems of less than 30 variables, bit may not be able to efficiently

handle problems containing a greater number of variables.

2. The algorithm seems capable of handling large numbers of con-

straints given that the number of variables Is kept limited.

Optimal value of objective function ■ 10; In time recorded Balas
achieved 12.

Optimal value of objective function ■ 18; In time recorded Balas
achieved 19.

3. Tlie algorithm tends to produce feasible solutions in short

order, and thus seems appropriate for large problems where only feas-

ible, and not optimal, solutions are sought.

4. Prior knowledge about likely values for variables and bounds

on the objective function can be extremely useful. Our results so far

suggest that ad hoc guessing procedures about such values combined with

this algorithm may be of great interest.

-8-

IV. FURTHER DEVELOPMENTS

The algorithm was originally programmed In essence following the

outline of reference (3), and most of the computational experience

reported herein Is based on that version. Certain modifications,

described below, suggested themselves and some of these have been

incorporated in a econd version of the algorithm that has now been

programmed.

1. Some computation time can possible be saved by setting a

number for the first "acceptable" value of the objective function. In

other words, we are indicating an upper bound beyond which a feasible

solution is not of interest. This, in essence, imposes a constraint

that the objective function shall be less than a certain value, ftiis

eliminates explicit consideration of relatively uafavorable feasible

solutions. The upper bound will be an Input parameter.

2. On some problems it was found that the algorithm produced an

optimal solution quickly, but took overlong to terminate. To hasten

termination, an aspiration level of the objective function can br

explicitly introduced. Once this aspiration level Is attained, compu-

tation is terminated. The aspiration level will be an Input parameter.

3. In moving from one solution to the next, the only criteria

was that there be an improvement in the objective function. An input

parameter will be Introduced to allow a specification of the minimum

size of improvement that is acceptable in moving from one feasible

solution to the next. This is intended to speed progress toward an

optimal solution.

4. In picking the variables to augment a partial solution,

primary attention is given to increasing feasibility. Another compu-

tational parameter has now been Introduced which allows some considera-

tion of enhancement of the objective function in picking augmentation

variables.

5. Provision has now been made so that any initial solution can

be used as a starting point. Thus, a priori Information can be utilized

(see reference 3, Sec. V, for fuller discussion).

Preliminary evidence indicates the upper bound and the aspiration

level are having the most pronounced effects.

-9-

Among the avenues of new research which remain open are the

following:

(a) At present, the algorithm tries only to find the best

completion of each partial solution, and then tests for its feasibility.

Augmentation takes place if it cannot be shown that there does n>t

exist a feasible solution yielding a lower objective function value

than the incumbent feasible solution. Instead of finding merely the

best completion, the algorithm could be adjusted to scan a few comple-

tions (the best, next best, etc.) in order to try to obtain the feasible

completion that is best. This would consist of making an array of say

the ten "nearest" best (In terms of objective function value) solutions

and scanning these at every iteration.

(b) Feasibility considerations are determined at present by

considering every constraint separately to determine If any of the
a

variables In the T set can decrease the total Infeasibility of the

present intermediate solution to the problem. Use of other constraints,

which must also be satisfied (composed of combinations of the original

constraints) , could lead to quicker determination of "no possible feas-

ibility." This notion Is analogous to the surrogate constraint concept

put forth by Glover (2). This same notion could help In limiting the

T set to more ultimately desirable augmentation variable dandidates

In terms of their effects upon groups of contraints. The idea of the

surrogate constraint Is to find something which "cuts" more strongly

than one constraint at a time. We can also consider taking a partial

solution as g'.ven and solving the remaining problems in "continuous"

fashion. The values of the fixed variables would be substituted into

the problem, and the problem would be solved as a regular (noninteger)

linear programming problem with the free variables restricted to be

between 0 and I. InfeaslbLllty of this problem indicates infeasibllity

of the integer problem with the given partial solution. This is a more

powerful feasibility test than the one in the present algorithm.

(c) A series of binary variables are utilized to represent

Integer variables with upper bounds greater than I. The columns of

these binary variables are 2 multiples of each other. This fact coi

be used to generate such columns whenever they are needed during the

-10-

course of the computation. Thus, only one column needs to be explicitly

carried. As the algorithm is programmed at present, no advantage is

taken of the special structure represented by the binary transformations.

(d) Given that the algorithm seems to function well in the

early stages of computation (i.e., finding an initial feasible solution

and improving upon it) , it might be well to start thinking about hybrid

schemes, which would use this algorithm as a first stage and then switch

to another technique to finish the computation.

Originally suggested by C. W. Graves.

•II-

V. CONCLUSION

It is recommended that research on this algorithm be continued

In order to establish its value of lack thereof in dealing with various

types of integer programming problems. Also, It would be of value to

run various codes upon the same set of problems In o.der to establish

definite computational guidelines for practitioners in the field.

12-

REFERENCES

1. Balas, E. , "An Additive Algorithm for Solving Linear Programs with
Zero-One Variables," Operations Research, Vol. 13, No. 4 (July-
August 1965) , pp. 517-546.

2. Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer
Pn grammlng Problem," Management Sciences Research Report No 25,
December 1964, Graduate School of Industrial Adnlnlstrattoh,
Carnegie Institute of Technology. Revised for release February
1965.

3. Geoffrlon, A., A Retormulatlon of Balas' Algorithm For Integer
Linear Programming. The RAND Corporation, RM-4783-PR, September
1965.

4. Haldl, J. , "TVenty-Flve Integer Programming Test Problems," Working
Paper No. 43, Graduate School of Business, Stanford University,
December 1964.

5. Wagner, H. M., R. J. Glgllo, and R. G. Glaser, "Preventive
Maintenance Scheduling by Mathematical Programming," Management
Science. Vol. 10, No. 2, January 1964, pp. 316-334.

